Abstract

We develop new solvability methods for divergence form second order, real and complex, elliptic systems above Lipschitz graphs, with $L_2$ boundary data. The coefficients $A$ may depend on all variables, but are assumed to be close to coefficients $A_0$ that are independent of the coordinate transversal to the boundary, in the Carleson sense $\|A-A_0\|_C$ defined by Dahlberg. We obtain a number of {\em a priori} estimates and boundary behaviour results under finiteness of $\|A-A_0\|_C$. Our methods yield full characterization of weak solutions, whose gradients have $L_2$ estimates of a non-tangential maximal function or of the square function, via an integral representation acting on the conormal gradient, with a singular operator-valued kernel. Also, the non-tangential maximal function of a weak solution is controlled in $L_2$ by the square function of its gradient. This estimate is new for systems in such generality, and even for real non-symmetric equations in dimension $3$ or higher. The existence of a proof {\em a priori} to well-posedness, is also a new fact. As corollaries, we obtain well-posedness of the Dirichlet, Neumann and Dirichlet regularity problems under smallness of $\|A-A_0\|_C$ and well-posedness for $A_0$, improving earlier results for real symmetric equations. Our methods build on an algebraic reduction to a first order system first made for coefficients $A_0$ by the two authors and A. McIntosh in order to use functional calculus related to the Kato conjecture solution, and the main analytic tool for coefficients $A$ is an operational calculus to prove weighted maximal regularity estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.