Abstract

Green communication is important for next generation wireless network to connect massive number of mobile devices into the network. The deployment of femtocell without proper densification, the interference was increases and resources were not properly utilized. We address the small cell dynamically clustering under microcell base station and resource allocation among the small cells using weighted majority cooperative game theory in fifth generation (5G) mobile heterogeneous network (HetNet). We proposed three utility functions. The first utility function is used for minimizing the interference into the cluster. The addition or deletion of small cell in a cluster depends on the proposed utility function based on signal-to-interference-plus-noise-ratio (SINR). The weight means the number of small cell present into the cluster. In each cluster, a high majority small cell is selected using second utility function based on the minimum path loss values between the microcell and small cell base station. The high majority small cell act as a spectrum manager into the cluster. Other small cells submit a price value based on the user type and requirement data rate for a subcarrier to the high majority small cell spectrum manager. The high majority small cell allocates resources to the small cells using proposed algorithm based on price value and the third utility function. In the proposed work, we have calculated the power consumption, SINR, spectral efficiency of the network. The power consumption of the proposed network decreases approximately 30%, SINR and spectral efficiency are increased approximately 40% and 45% than existing approaches respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call