Abstract

Estimation of the tail index of heavy-tailed distributions and its applications are essential in many research areas. We propose a class of weighted least squares (WLS) estimators for the Parzen tail index. Our approach is based on the method developed by Holan and McElroy (J Stat Plan Inference 140(12):3693–3708, 2010). We investigate consistency and asymptotic normality of the WLS estimators. Through a simulation study, we make a comparison with the Hill, Pickands, DEdH (Dekkers, Einmahl and de Haan) and ordinary least squares (OLS) estimators using the mean square error as criterion. The results show that in a restricted model some members of the WLS estimators are competitive with the Pickands, DEdH and OLS estimators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.