Abstract
The recognition of affective states is important for regulating stress levels and maintaining mental health, and it is known that affective states can be inferred from physiological signals. However, in practice, the problem of affect recognition contains many challenges due to various types of external noise and different individual characteristics. This paper proposes a deep learning model called Attention-LRCN for recognizing affective states from photoplethysmography (PPG) signals. We construct a long-term recurrent convolutional network to extract temporal features from spectrograms, and a novel attention module is introduced to alleviate the effect of noise components in PPG signals. Moreover, to improve the recognition accuracy, we propose a weighted knowledge distillation technique, which is a teacher–student learning framework. We quantify the uncertainty of teacher’s predictions, and the predictive uncertainty is utilized to adaptively compute the weight of the distillation loss. To demonstrate the effectiveness of the proposed method, experiments were conducted on the WESAD dataset, which is a public dataset for stress and affect detection. We also collected our own dataset from 34 subjects to verify the accuracy of the proposed method. Experimental results demonstrate that the proposed method significantly outperforms previous algorithms on both the public and real-world datasets. The code is available at https://github.com/ziiho08/Attention-LRCN.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.