Abstract

Humans might possess either a single (amodal) internal clock or multiple clocks for different sensory modalities. Sensitivity could be improved by the provision of multiple signals. Such improvements can be predicted quantitatively, assuming estimates are combined by summation, a process described as optimal when summation is weighted in accordance with the variance associated with each of the initially independent estimates. This possibility was assessed for visual and tactile information regarding temporal intervals. In Experiment 1, 12 musicians and 12 nonmusicians judged durations of 300 and 600 ms, compared to test values spanning these standards. Bimodal precision increased relative to unimodal conditions, but not to the extent predicted by optimally weighted summation. In Experiment 2, 6 musicians and 6 other participants each judged 6 standards, ranging from 100 ms to 600 ms, with conflicting cues providing a measure of the weight assigned to each sensory modality. A weighted integration model best fitted these data, with musicians more likely to select near-optimal weights than nonmusicians. Overall, data were consistent with the existence of separate visual and tactile clock components at either the counter/integrator or memory stages. Independent estimates are passed to a decisional process, but not always combined in a statistically optimal fashion. (PsycINFO Database Record

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.