Abstract

Recently sparse coding based on regression analysis has been widely used in face recognition research. Most existing regression methods add an extra constraint factor to the coding residual to make the fidelity term in the $$l_{2}$$ loss approach the Gaussian or Laplace distribution. But the essence of these methods is that only the fidelity term of $$l_{1}$$ loss or $$l_{2}$$ loss is used. In this paper, weighted Huber constrained sparse coding (WHCSC) is used to study the robustness of face recognition in occluded environments, and alternating direction method of multipliers is used to solve the problem of model minimization. In WHCSC, we propose a sparse coding with weight learning and use Huber loss to determine whether the fidelity is a $$l_{2}$$ loss or $$l_{1}$$ loss. For the WHCSC model, the two kinds of classification modes and the two kinds of weight coefficients are further studied for the intra-class difference and the inter-class difference in the face image classification. Through a large number of experiments on a public face database, WHCSC shows strong robustness in face occlusion, corrosion and illumination changes comparing to the state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.