Abstract

We give a randomized polynomial time algorithm with approximation ratio $O(\log \phi(n))$ for weighted set multi-cover instances with a shallow cell complexity of at most $f(z,k) =z\phi(z) k^{O(1)}$. Up to constant factors, this matches a recent result of Chan, Grant, Konemann and Sharpe for the set cover case, i.e. when all the covering requirements are 1. One consequence of this is an $O(1)$-approximation for geometric weighted set multi-cover problems when the geometric objects have linear union complexity; for example when the objects are disks, unit cubes or halfspaces in $\mathbb{R}^3$. Another consequence is to show that the real diculty of many natural capacitated set covering problems lies with solving the associated priority cover problem only, and not with the associated multi-cover problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.