Abstract

In this paper, we obtain sufficient conditions for the weighted Fourier-type transforms to be bounded in Lebesgue and Lorentz spaces. Two types of results are discussed. First, we review the method based on rearrangement inequalities and the corresponding Hardy’s inequalities. Second, we present Hormander-type conditions on weights so that Fourier-type integral operators are bounded in Lebesgue and Lorentz spaces. Both restricted weak- and strong-type results are obtained. In the case of regular weights necessary and sufficient conditions are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.