Abstract
Bivariate extreme-value distributions have been used in modeling extremes in environmental sciences and risk management. An important issue is estimating the dependence function, such as the Pickands dependence function. Some estimators for the Pickands dependence function have been studied by assuming that the marginals are known. Recently, Genest and Segers [Ann. Statist. 37 (2009) 2990-3022] derived the asymptotic distributions of those proposed estimators with marginal distributions replaced by the empirical distributions. In this article, we propose a class of weighted estimators including those of Genest and Segers (2009) as special cases. We propose a jackknife empirical likelihood method for constructing confidence intervals for the Pickands dependence function, which avoids estimating the complicated asymptotic variance. A simulation study demonstrates the effectiveness of our proposed jackknife empirical likelihood method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.