Abstract
In this paper, a third-order weighted essentially non-oscillatory (WENO) scheme is developed for the hyperbolic conservation laws on unstructured quadrilateral and triangular meshes. As a starting point, a general stencil is selected for the cell with any local topology, and a unified linear scheme can be constructed. However, in the traditional WENO scheme on unstructured meshes, the very large and negative weights may appear for the mesh with lower local mesh quality, which make the WENO scheme unstable even for the smooth tests. In the current scheme, an optimization approach is given to deal with the very large linear weights, and the splitting technique is considered to deal with the negative weights obtained by the optimization approach. The non-linear weights with the new smooth indicator are proposed as well, in which the local mesh quality and discontinuities of solutions are taken into account simultaneously. Numerical tests are presented to validate the current scheme. The expected convergence rate of accuracy is obtained, and the absolute value of error is not affected by mesh quality. The numerical tests with strong discontinuities validate the robustness of current WENO scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.