Abstract
We investigate the fair allocation of indivisible goods to agents with possibly different entitlements represented by weights. Previous work has shown that guarantees for additive valuations with existing envy-based notions cannot be extended to the case where agents have matroid-rank (i.e., binary submodular) valuations. We propose two families of envy-based notions for matroid-rank and general submodular valuations, one based on the idea of transferability and the other on marginal values. We show that our notions can be satisfied via generalizations of rules such as picking sequences and maximum weighted Nash welfare. In addition, we introduce welfare measures based on harmonic numbers, and show that variants of maximum weighted harmonic welfare offer stronger fairness guarantees than maximum weighted Nash welfare under matroid-rank valuations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.