Abstract

SummaryEnvelope methodology can provide substantial efficiency gains in multivariate statistical problems, but in some applications the estimation of the envelope dimension can induce selection volatility that may mitigate those gains. Current envelope methodology does not account for the added variance that can result from this selection. In this article, we circumvent dimension selection volatility through the development of a weighted envelope estimator. Theoretical justification is given for our estimator, and the validity of the residual bootstrap for estimating its asymptotic variance is established. A simulation study and real-data analysis illustrate the utility of our weighted envelope estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.