Abstract

We establish the equivalence between being invertible and preserving p-frames for weighted composition operators on the unit disk. Moreover, we obtain the symbol properties of the bounded invertible operators. Based on those results, we prove that for the weighted Bergman spaces Aap(dAα), Besov spaces Bp and weighted Dirichlet spaces Dα2, weighted composition operators preserve p-frames on X if and only if they preserve q-Riesz bases on X⁎, and obtain related application on dynamical sampling of weighted composition operators. Furthermore, we characterize the equivalence between Fredholmness and the invertibility of weighted composition operators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.