Abstract

Let $${\mathbb {D}}$$ denote the open unit disk in $${\mathbb {C}}$$. For an integer $$n\ge 0$$, let $$V_n$$ be the space defined recursively by $$\begin{aligned} V_0=\big \{f:{\mathbb {D}}\rightarrow {\mathbb {C}}: f \text { analytic}, |f(z)|=O\big ((1-|z|)^{-1}\big )\big \}, \end{aligned}$$and for $$n\ge 1$$, $$f\in V_n$$ if and only if $$f'\in V_{n-1}$$. In this work, we characterize the bounded and the compact weighted composition operators between $$V_n$$ and the Bloch space and the space BMOA of analytic functions of bounded mean oscillation, respectively. We also show that the bounded (respectively, compact) weighted composition operators mapping the space BMOA into $$V_n$$ are precisely the same as the bounded (respectively, compact) weighted composition operators mapping the Bloch space into $$V_n$$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.