Abstract

ABSTRACTA weighted bootstrap method is proposed to approximate the distribution of the () norms of two-sample statistics involving kernel density estimators. Using an approximation theorem of Horváth, Kozkoszka and Steineback [(2000) ‘Approximations for Weighted Bootstrap Processes with an Application’, Statistics and Probability Letters, 48, 59–70], that allows one to replace the weighted bootstrap empirical process by a sequence of Gaussian processes, we establish an unconditional bootstrap central limit theorem for such statistics. The proposed method is quite straightforward to implement in practice. Furthermore, through some simulation studies, it will be shown that, depending on the weights chosen, the proposed weighted bootstrap approximation can sometimes outperform both the classical large-sample theory as well as Efron's [(1979) ‘Bootstrap Methods: Another Look at the Jackknife’, Annals of Statistics, 7, 1–26] original bootstrap algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.