Abstract

There are growing concerns about the mortality due to Breast cancer many of which often result from delayed detection and treatment. So an effective computational approach is needed to develop a predictive model which will help patients and physicians to manage the situation timely. This study presented a Weighted Bayesian Belief Network (WBBN) modeling for breast cancer prediction using the UCI breast cancer dataset. New automated ranking method was used to assign proper weights to attribute value pair based on their impact on causing the disease. Association between attributes was generated using weighted association rule mining between two attributes, multiattributes, and with class labels to generate rules. Weighted Bayesian confidence and weighted Bayesian lift measures were used to produce strong rules to build the model. To build WBBN, the Open Markov tool was used for structure and parametric learning using generated strong rules. The model was trained using 70% records and tested on 30% records with a threshold value of minimum support = 36% and confidence = 70% which produced results with an accuracy of 97.18%. Experimental results show that WBBN achieved better results in most cases compared to other predictive models. The study would contribute to the fight against breast cancer and the quality of treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.