Abstract

For an admissible affine vertex algebra $V_k(\mathfrak{g})$ of type $A$, we describe a new family of relaxed highest weight representations of $V_k(\mathfrak{g})$. They are simple quotients of representations of the affine Kac-Moody algebra $\widehat{\mathfrak{g}}$ induced from the following $\mathfrak{g}$-modules: 1) generic Gelfand-Tsetlin modules in the principal nilpotent orbit, in particular all such modules induced from $\mathfrak{sl}_2$; 2) all Gelfand-Tsetlin modules in the principal nilpotent orbit which are induced from $\mathfrak{sl}_3$; 3) all simple Gelfand-Tsetlin modules over $\mathfrak{sl}_3$. This in particular gives the classification of all simple positive energy weight representations of $V_k(\mathfrak{g})$ with finite dimensional weight spaces for $\mathfrak{g}=\mathfrak{sl}_3$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.