Abstract

As policies and regulations related to environmental protection and resource constraints are becoming increasingly tougher, corporations may face the difficulty of determining the optimal trade-offs between economic performance and environmental concerns when selecting product technology and designing supply chain networks. This paper considers weight reduction technology selection and network design problem in a real-world corporation in China which produces, sells and recycles polyethylene terephthalate (PET) bottles used for soft drinks. The problem is addressed while taking consideration of future regulations of carbon emissions restrictions. First, a deterministic mixed-integer linear programming model is developed to analyze the influence of economic cost and carbon emissions for different selections in terms of the weight of PET bottle, raw material purchasing, vehicle routing, facility location, manufacturing and recycling plans, etc. Then, the robust counterpart of the proposed mixed-integer linear programming model is used to deal with the uncertainty in supply chain network resulting from the weight reduction. Finally, results show that though weight reduction is both cost-effective and environmentally beneficial, the increased cost due to the switching of the filling procedure from hot-filling to aseptic cold-filling and the incumbent uncertainties have impacts on the location of the Pareto frontier. Besides, we observe that the feasible range between economic cost and carbon emission shrinks with weightreduction; and the threshold of restricted volume of carbon emission decreases with the increase of uncertainty in the supply chain network.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.