Abstract

This paper proposes a novel framework to manage subgroups' non-cooperative behavior by weight penalty in largescale group decision making (LSGDM). To do that, a trustconsensus index (TCI) is defined by combining trust score and consensus degree among experts expressed by unbalanced linguistic term sets. A Louvain algorithm clustering process based on undirected graph composed of TCI is introduced to detect the subgroups in large network. Hence, a weight penalty feedback model is established to manage the subgroups detected as discordant and non-cooperative. The proposed method novelty resides in that the minimum adjustment cost can be obtained with respect to the penalty parameter. A detail analysis regarding the computation of the optimal penalty parameter to prevent excessive penalization is reported. Finally, a detailed numerical and comparative analyses are provided to verify the validity of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.