Abstract
Exercise has been linked to a reduced cancer risk in animal models. However, the underlying mechanisms are unclear. This study assessed the effect of exercise with dietary consideration on the phospholipid profile in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin tissues. CD-1 mice were randomly assigned to one of the three groups: ad libitum-fed sedentary control; ad libitum-fed treadmill exercise at 13.4 m/min for 60 min/d, 5 d/wk (Ex+AL); and treadmill-exercised but pair-fed with the same amount as the control (Ex+PF). After 14 weeks, Ex+PF but not Ex+AL mice showed approximately 25% decrease in both body weight and body fat when compared with the controls. Of the total 338 phospholipids determined by electrospray ionization-tandem mass spectrometry, 57 were significantly changed, and 25 species could distinguish effects of exercise and diet treatments in a stepwise discriminant analysis. A 36% to 75% decrease of phosphatidylinositol (PI) levels in Ex+PF mice occurred along with a significant reduction of PI 3-kinase in TPA-induced skin epidermis, as measured by both Western blotting and immunohistochemistry. In addition, approximately 2-fold increase of the long-chain polyunsaturated fatty acids, docosahexaenoic and docosapentaenoic acids, in phosphatidylcholines, phosphatidylethanolamines, and lysophosphatidylethanolamines was observed in the Ex+PF group. Microarray analysis indicated that the expression of fatty acid elongase-1 increased. Taken together, these data indicate that exercise with controlled dietary intake, but not exercise alone, significantly reduced body weight and body fat as well as modified the phospholipid profile, which may contribute to cancer prevention by reducing TPA-induced PI 3-kinase and by enhancing omega-3 fatty acid elongation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.