Abstract

Prediction models for major nutrients of rice were built using near-infrared (NIR) spectral data based on the artificial neural network (ANN). Scientific interpretation of the weight values was proposed and performed to understand the wavenumbers contributing to the prediction of nutrients. NIR spectra were acquired from 110 rice samples. Carbohydrate and moisture contents were predicted with values for the determination coefficient, relative root mean square error, range error ratio, and residual prediction deviation of 0.98, 0.11 %, 44, and 7.3, and 0.97, 0.80 %, 27, and 5.8, respectively. The results agreed well with ones reported in the previous studies and acquired by the conventional partial least squares (PLS)-variable importance in projection method. This study demonstrates that the combination of NIR and ANN is a powerful and accurate tool to monitor nutrients of rice and scientific interpretation of weights can be performed to overcome black box nature of the ANN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.