Abstract

This paper presents an efficient numerical weight function technique, based on the boundary element method, for the determination of stress intensity factors of curved crack fronts in three-dimensional finite bodies. The weight functions are based on the notion of fundamental fields, which are defined from point loads acting at the crack front. A regularization procedure that incorporates the fundamental fields of the penny-shaped crack in an infinite elastic body is used to obtain weight functions for a penny-shaped edge crack in a cylindrical bar. Stress intensity factors for elliptical crack fronts can be generated by employing the properties of the fundamental fields at the load points on the crack front. Stress intensity factor variations along the crack-fronts are presented when these finite cracked geometries are subjected to various loads that produce mode I deformation of the crack faces. Wherever possible, solutions are compared with values published in the literature and are found to be in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call