Abstract

We investigate the stationary (late-time) training regime of single- and two-layer underparameterized linear neural networks within the continuum limit of stochastic gradient descent (SGD) for synthetic Gaussian data. In the case of a single-layer network in the weakly underparameterized regime, the spectrum of the noise covariance matrix deviates notably from the Hessian, which can be attributed to the broken detailed balance of SGD dynamics. The weight fluctuations, are in this case, generally anisotropic but effectively experience an isotropic loss. For an underparameterized two-layer network, we describe the stochastic dynamics of the weights in each layer and analyze the associated stationary covariances. We identify the interlayer coupling as a distinct source of anisotropy for the weight fluctuations. In contrast to the single-layer case, the weight fluctuations are effectively subject to an anisotropic loss, the flatness of which is inversely related to the fluctuation variance. We thereby provide an analytical derivation of the recently observed inverse-variance flatness relation in a model of a deep linear neural network. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.