Abstract

We prove that elements of the Weierstrass gap set of a pair of points may be used to define a geometric Goppa code that has minimum distance greater than the usual lower bound. We determine the Weierstrass gap set of a pair of any two Weierstrass points on a Hermitian curve and use this to increase the lower bound on the minimum distance of certain codes defined using a linear combination of the two points. In particular, we obtain some two-point codes on a Hermitian curve that have better parameters than the one-point code on this curve with the same dimension. These results generalize to certain codes defined using an m-tuple of points on a smooth projective absolutely irreducible curve.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.