Abstract

Current multi-proxy studies on a long sediment sequence preserved at Sokli (N Finland), i.e. in the central area of Fennoscandian glaciations, are drastically changing classic ideas of glaciations, vegetation and climate in northern Europe during the Late Pleistocene. The sediments in the Sokli basin have escaped major glacial erosion due to non-typical bedrock conditions. In this review, the Sokli record is compared in great detail with other long proxy records from central, temperate and northern, boreal Europe. These comprise the classic records of La Grande Pile (E France) and Oerel (N Germany) and more recently obtained records from Horoszki Duże (E Poland) and Lake Yamozero (NW Russia). The focus of the review is on pollen, lithology and macrofossil- and insect-based temperature inferences. The long records are further compared with recent proxy data from nearby terrestrial sites as well as with the rapidly accumulating high-resolution proxy data from the ocean realm. The comparison allows a re-examination of the environmental history and climate evolution of the Last Interglacial–Glacial (LI–G) cycle (MIS 5–2). It shows that environmental and climate conditions during MIS 5 (ca 130–70 ka BP) were distinctly different from those during MIS 4–2 (ca 70–15 ka BP). MIS 5 is characterized by three long forested intervals (broadly corresponding to MIS 5e, 5c, 5a), both in temperate and northern boreal Europe. These mild periods were interrupted by two short, relatively cold and dry intervals (MIS 5d and 5b) with mountain-centered glaciation in Fennoscandia. Millennial scale climate events were superimposed upon these longer lasting climate fluctuations. The time interval encompassing MIS 4–2 shows open vegetation. It is characterized by two glacial maxima (MIS 4 and 2) with sub-continental scale glaciation over northern Europe and dry conditions in strongly continental eastern European settings. High amplitude climate oscillations of millennial duration characterized the climate variability of MIS 3. Mild climate conditions in early MIS 3 caused large-scale deglaciation of the Fennoscandian Ice Sheet, and ice-free conditions with Betula-dominated vegetation (including tree birch) persisted over large parts of Fennoscandia, possibly interrupted by glaciation, during major part of MIS 3 till ca 35 ka BP. Overall, MIS 5 was mostly mild with warmest or peak interglacial conditions at the very start during MIS 5e. MIS 4–2 was mostly cold with most extreme or peak glacial conditions in the closing phase during MIS 2. This points to a subdivision of the last climate cycle into an early, overall mild interglacial half and a late, overall cold glacial half, each with duration of ca 50 ka. This review also shows that the climate variability in central and northern Europe during the LI–G cycle was mostly in degrees of continentality with major shifts in winter temperature and precipitation values; summer temperatures, on the other hand, remained largely unchanged. It points to the waxing and waning of sea-ice over the North Atlantic Ocean as a possible characteristic feature of the Late Pleistocene. The present compilation, based on long terrestrial sequences, high-resolution multi-proxy data from the oceans, and quantified paleo-climate data, strongly favors a definition of entire Marine Oxygen Isotope Stage 5 as the Last Interglacial similar as in the original marine stratigraphy and the stratigraphy at La Grande Pile in France. The proxy-based climate data places the start of the Last Glacial at the base of MIS 4 and the northwest European Pleniglacial. It shows that the division between the Eemian (MIS 5e) and the Early Weichselian (MIS 5d-a) is not useful, as not relevant from a climate point of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call