Abstract

In this paper we describe our measurements of the Weibull parameters of a specific basalt material, called Yakuno basalt, which was used in documented high‐velocity impact experiments. The outcomes of these experiments have been widely used to validate numerical codes of fragmentation developed in the context of planetary science. However, the distribution of incipient flaws in the targets, usually characterized by the Weibull parameters, has generally been implemented in the codes with values allowing to match the experimental outcomes; hence the validity of numerical simulations remains to be assessed with the actual values of these parameters from laboratory measurements. Here we follow the original method proposed by Weibull in 1939 to measure these parameters for this Yakuno basalt. We obtain a value of the Weibull modulus (also called shape parameter) m in the range 15–17 with a typical error of about 1.0 for each different trial. This value is larger than the one corresponding to simulation fits to the experimental data, generally around 9.5. The characteristic strength, which corresponds to 63.2% of failure of a sample of similar specimens and which defines the second Weibull or scale parameter, is estimated to be 19.3–19.4 MPa with a typical error of about 0.05 MPa. This parameter seems to not be sensitive to the different loading rates used to make the measurements. A complete database of impact experiments on basalt targets, including both the important initial target parameters and the detailed outcome of their disruptions, is now at the disposal of numerical codes of fragmentation for validity test.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.