Abstract

AbstractIt is the purpose of this paper to propose a novel clustering technique tailored to randomly censored data in reliability/survival analysis. It is based on an underlying mixture model of Weibull distributions and consists in estimating its parameters by means of a variant of the Expectation–Maximization method in the presence of random censorship. Beyond the description of the algorithm, model selection issues are addressed and we investigate its performance from an empirical perspective by applying it to possibly strongly censored (synthetic and real) survival data. The experiments carried out provide strong empirical evidence that our algorithm performs better than alternative methods standing as natural competitors in this framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.