Abstract

Today, most electrical energy is generated by burning huge fossil fuels and special weather conditions such as acid rain and snow, climate change, urban smog, regional haze, several tornados, etc., have happened around the whole world. It is now clear that the installation of a number of wind turbine generators can effectively reduce environmental pollution, fossil fuel consumption, and the costs of overall electricity generation. Although wind is only an intermittent source of energy, it represents a reliable energy resource from a long-term energy policy viewpoint. Among various renewable energy resources, wind power energy is one of the most popular and promising energy resources in the whole world today. At a specific wind farm, the available electricity generated by a wind power generation system depends on mean wind speed (MWS), standard deviation of wind speed, and the location of installation. Since year-to-year variation on annual MWS is hard to predict, wind speed variations during a year can be well characterized in terms of a probability distribution function (pdf). This paper also addresses the relations among MWS, its standard deviation, and two important parameters of Weibull distribution. The wind resource varies with of the day and the season of the year and even some extent from year to year. Wind energy has inherent variances and hence it has been expressed by distribution functions. In this paper, we present some methods for estimating Weibull parameters, namely, shape parameter ( k ) and scale parameter ( c ). The Weibul distribution is an important distribution especially for reliability and maintainability analysis. The suitable values for both shape parameter and scale parameters of Weibull distribution are important for selecting locations of installing wind turbine generators. The scale parameter of Weibull distribution also important to determine whether a wind farm is good or not. The presented method is the analytical methods and computational experiments on the presented methods are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call