Abstract

In the era of information explosion, rumors will cause great harm and affect social stability. Most rumor detection methods concentrate on extracting features from content and consumer information. We propose a brand-new approach to early rumor identification, MSR-GAT. Firstly, the source text and comment text are fused as node features and the relation between events is considered edge information. Then, the graph attention model is constructed to classify nodes and complete rumor detection. The experimental findings demonstrate that the detection algorithm outperforms the baselines algorithm in accuracy, precision, recall and F1-Measure. It can accurately identify rumors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.