Abstract
Ablating a target with an ultraintense laser pulse can create a cloud of collisionless plasma. A density ramp forms, in which the plasma density decreases and the ion’s mean speed increases with distance from the plasma source. Its width increases with time. Electrons lose energy in the ion’s expansion direction, which gives them a temperature anisotropy. We study with one-dimensional particle-in-cell simulations the expansion of a dense plasma into a dilute one, yielding a density ramp similar to that in laser-plasma experiments and a thermal-anisotropy-driven instability. Non-propagating Weibel-type wave modes grow in the simulation with no initial magnetic field. Their magnetic field diffuses across the shock and expands upstream. Circularly polarized propagating Whistler waves grow in a second simulation, in which a magnetic field is aligned with the ion expansion direction. Both wave modes are driven by non-resonant instabilities, they have similar exponential growth rates, and they can leave the density ramp and expand into the dilute plasma. Their large magnetic amplitude should make them detectable in experimental settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.