Abstract

The development of wearable electronic devices has greatly stimulated the research interest of textile-based strain sensors, which can effectively combine functionality with wearability. In this work, the fabrication of highly stretchable and compressible strain sensors from weft-knitted spacer fabric was reported. Carbon nanotubes and polypyrrole were deposited on the surface of fabric via an in situ polymerization approach to reduce the electrical resistance. The as-fabricated WSP-CNT-PPy strain sensor exhibits high electrical conductivity and stable strain-sensing performance under different stretching deformations. The WSP-CNT-PPy strain sensor can be stretched up to 450% and compressed to 60% with a pressure of less than 50 KPa, which can be attributed to the unique loop and interval filament structures. The distinguishing response efficiency of WSP-CNT-PPy can effectively detect faint and strenuous body movements. In addition, the electrochemical behavior of WSP-CNT-PPy was also characterized to study the comprehensive properties. The electro-heating performance was also evaluated for feasible Joule heater applications. This work demonstrates the practicability of WSP-CNT-PPy strain sensor fabric for real-time monitoring in promising wearable garments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call