Abstract

Detailed description of the time course of muscular adaptation is rarely found in literature. Thus, models of muscular adaptation are difficult to validate since no detailed data of adaptation are available. In this article, as an initial step toward a detailed description and analysis of muscular adaptation, we provide a case report of 8 weeks of intense strength training with two active, male participants. Muscular adaptations were analyzed on a morphological level with MRI scans of the right quadriceps muscle and the calculation of muscle volume, on a voluntary strength level by isometric voluntary contractions with doublet stimulation (interpolated twitch technique) and on a non-voluntary level by resting twitch torques. Further, training volume and isokinetic power were closely monitored during the training phase. Data were analyzed weekly for 1 week prior to training, pre-training, 8 weeks of training and 2 weeks of detraining (no strength training). Results show a very individual adaptation to the intense strength training protocol. While training volume and isokinetic power increased linearly during the training phase, resting twitch parameters decreased for both participants after the first week of training and stayed below baseline until de-training. Voluntary activation level showed an increase in the first 4 weeks of training, while maximum voluntary contraction showed only little increase compared to baseline. Muscle volume increased for both subjects. Especially training status seemed to influence the acute reaction to intense strength training. Fatigue had a major influence on performance and could only be overcome by one participant. The results give a first detailed insight into muscular adaptation to intense strength training on various levels, providing a basis of data for a validation of muscle fatigue and adaptation models.

Highlights

  • Homeostasis is a basic principle of biology that was first mentioned by Cannon (1926)

  • Predicting the time course of muscular adaptation is of great interest in research in order to better understand biological aging, to optimize space flight training protocols, to establish counter measures and preventional training procedures, or to optimize pure muscular training protocols

  • Our study shows that the adaptation of muscular parameters to intense strength training is a complex process

Read more

Summary

Introduction

Homeostasis is a basic principle of biology that was first mentioned by Cannon (1926) It describes the process of a biological organism to keep its settled, internal status, according to the respective environmental condition. Unusual external perturbations are, for example, intensive strength training or severe muscular underloading, as in subjects with no or dramatically less physical activity from extended bed rest or space flight. In such cases, homeostasis triggers adaptation processes such that the organism is able to deal with the varied environmental conditions. Predicting the time course of muscular adaptation is of great interest in research in order to better understand biological aging, to optimize space flight training protocols, to establish counter measures and preventional training procedures, or to optimize pure muscular training protocols

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call