Abstract

The aim of this study was two-fold: (1) to analyze the variations of acute load, training monotony, and training strain among early (pre-season), mid (first half of season), and end season (second half of season) periods; (2) to compare these training indicators for playing positions in different moments of the season. Nineteen professional players (age: 26.5 ± 4.3 years; experience as professional: 7.5 ± 4.3 years) from a European First League team participated in this study. The players were monitored daily over a 45-week period for the total distance (TD), distance covered (DC) at 14 km/h−1 or above (DC > 14 km/h), high-speed running above 19.8 km/h−1 (HSR) distance, and number of sprints above 25.2 km/h−1. The acute load (sum of load during a week), training monotony (mean of training load during the seven days of the week divided by the standard deviation of the training load of the seven days), and training strain (sum of the training load for all training sessions and matches during a week multiplied by training monotony) workload indices were calculated weekly for each measure and per player. Results revealed that training monotony and training strain for HSR were meaningfully greater in pre-season than in the first half of the in-season (p ≤ 0.001; d = 0.883 and p ≤ 0.001; d = 0.712, respectively) and greater than the second half of the in-season (p ≤ 0.001; d = 0.718 and p ≤ 0.001; d = 0.717). The training monotony for the sprints was meaningfully greater in pre-season than in the first half of in-season (p < 0.001; d = 0.953) and greater than the second half of in-season (p ≤ 0.001; d = 0.916). Comparisons between playing positions revealed that small-to-moderate effect sizes differences mainly for the number of sprints in acute load, training monotony, and training strain. In conclusion, the study revealed that greater acute load, training monotony, and training strain occurred in the pre-season and progressively decreased across the season. Moreover, external defenders and wingers were subjected to meaningfully greater acute load and training strain for HSR and number of sprints during the season compared to the remaining positions.

Highlights

  • The training process can be individualized using proper monitoring approaches that help to identify daily variations in a player’s status [1] and the load that he or she is experiencing during training sessions and matches [2]

  • Training monotony and training strain were calculated for each of the microelectromechanical systems (MEMS) measures

  • The training monotony for high-speed running above 19.8 km/h−1 (HSR) was meaningfully greater in periods of the season (PS) than in the 1st HS (44%; p ≤ 0.001; d = 0.883, moderate ES) and greater than the 2nd HS (44%; p ≤ 0.001; d = 0.718, moderate ES)

Read more

Summary

Introduction

The training process can be individualized using proper monitoring approaches that help to identify daily variations in a player’s status [1] and the load that he or she is experiencing during training sessions and matches [2]. To quantify the external load measures, many researchers have used microelectromechanical systems (MEMS) due to their convenience, validity, and reliability in integrating multidimensional information [9]. The use of these systems aids the daily practice of sports science practitioners in controlling the within- and between-week variations in the load imposed on players. They can preventively identify the best approaches to use to optimize training. They can identify injury risks and overreaching [10,11]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.