Abstract
Weeds compete with crops for water and nutrients and can adversely affect crop growth and yield, so it is important to research effective weed control methods. This paper provides an overview of the impact of weeds on crop yield and describes the current state of research on weed management in field herbaceous crops. Physical weed control mainly refers to thermal technologies represented by flame weed control and laser weed control, which can efficiently and accurately remove weeds. Mechanical weed control requires a combination of sensor technologies, machine vision technology, and high-precision navigation to improve weed control accuracy. Biological weed control relies heavily on plant extracts and pathogens to create herbicides, but it is costly, and some can be toxic to mammals. Chemical weed control is a common method, resulting in environmental pollution and weed resistance. To reduce the use of chemical herbicides, scholars have proposed integrated weed management strategies, which combine biological control, control of the seed bank, and improve crop competitiveness. Integrated weed management strategies are considered to be the future direction of weed management. In conclusion, physical, mechanical, biological, and chemical weed control methods are commonly used in weed management. Each method has its applicable scenarios, and the implementation of integrated weed management strategies can lead to better weed control, improving crop yield and quality. The main objective of this review is to organize the research progress on weed management methods for herbaceous crops in the field and to provide a reference for the agricultural sector to develop weed control strategies. Specifically, this paper categorizes weed management methods into four groups, discusses and presents the advantages and disadvantages of the aforementioned weed control methods, and discusses future research directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.