Abstract

We tested and validated the accuracy of wavelet transform along with stepwise linear discriminant analysis (SWLDA) and support vector machines (SVMs) for crop/weed classification for real time selective herbicides systems. Unlike previous systems, the proposed algorithm involves a pre-processing step, which helps to eliminate lighting effects to ensure high accuracy in real-life scenarios. We tested a large group of wavelets (46) and decomposed them up to four levels to classify weed images into weeds with broad leaves versus weeds with narrow leaves classes. SWLDA was then employed to reduce the feature space by extracting only the most meaningful features. Finally, the features provided by SWLDA were fed to the SVMs for classification. The proposed method was tested on a database of 1200 samples, which is a much larger database size than that studied previously (200-400 samples). Using confusion matrices, the crop/ weed classification results obtained using different wavelets at different decomposition levels were compared, and this approach was also compared with existing techniques that use statistical and structural approaches. The overall classification accuracy obtained using the symlet wavelet family was 98.1%. These results represent an improvement of 14% in performance compared with existing techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.