Abstract

In this paper the problem of calculating the probability of failure of linear dynamical systems subjected to random excitations is considered. The failure probability can be described as a union of failure events each of which is described by a linear limit state function. While the failure probability due to a union of non-interacting limit state functions can be evaluated without difficulty, the interaction among the limit state functions makes the calculation of the failure probability a difficult and challenging task. A novel robust reliability methodology, referred to as Wedge-Simulation-Method, is proposed to calculate the probability that the response of a linear system subjected to Gaussian random excitation exceeds specified target thresholds. A numerical example is given to demonstrate the efficiency of the proposed method which is found to be enormously more efficient than Monte Carlo Simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.