Abstract

The method of deforming free fields by using multiplication operators on Fock space, introduced by G. Lechner in [11], is generalized to a charged free field on two- and three-dimensional Minkowski space. In this case the deformation function can be chosen in such a way that the deformed fields satisfy generalized commutation relations, i.e. they behave like Anyons instead of Bosons. The fields are "polarization free" in the sense that they create only one-particle states from the vacuum and they are localized in wedges (or "paths of wedges"), which makes it possible to circumvent a No-Go theorem by J. Mund [12], stating that there are no free Anyons localized in spacelike cones. The two-particle scattering matrix, however, can be defined and is different from unity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.