Abstract

Abstract As web has become the most popular media to attract users and customers worldwide, webpage aesthetics plays an increasingly important role for engaging users online and impacting their user experience. We present a novel method using deep learning to automatically compute and quantify webpage aesthetics. Our deep neural network, named as Webthetics, which is trained from the collected user rating data, can extract representative features from raw webpages and quantify their aesthetics. To improve the model performance, we propose to transfer the knowledge from image style recognition task into our network. We have validated that our method significantly outperforms previous method using hand-crafted features such as colorfulness and complexity. These promising results indicate that our method can serve as an effective and efficient means for providing objective aesthetics evaluation during the design process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.