Abstract
An interesting research area that permits the user to mine the significant information, called frequent subgraph, is Graph-Based Data Mining (GBDM). One of the well-known algorithms developed to extract frequent patterns is GASTON algorithm. Retrieving the interesting webpages from the log files contributes heavily to various applications. In this work, a webpage recommendation system has been proposed by introducing Chronological Cuckoo Search (Chronological-CS) algorithm and the Laplace correction based k-Nearest Neighbor (LKNN) to retrieve the useful webpage from the interesting webpage. Initially, W-Gaston algorithm extracts the interesting subgraph from the log files and provides it to the proposed webpage recommendation system. The interesting subgraphs subjected to clustering with the proposed Chronological-CS algorithm, which is developed by integrating the chronological concept into Cuckoo Search (CS) algorithm, provide various cluster groups. Then, the proposed LKNN algorithm recommends the webpage from the clusters. Simulation of the proposed webpage recommendation algorithm is done by utilizing the data from MSNBC and weblog database. The results are compared with various existing webpage recommendation models and analyzed based on precision, recall, and F-measure. The proposed webpage recommendation model achieved better performance than the existing models with the values of 0.9194, 0.8947, and 0.86736, respectively, for the precision, recall, and F-measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.