Abstract

Volcanological observatories have common needs and often common practical issues for multi-disciplinary data monitoring applications. Real-time access to integrated data, technical metadata, modeling and estimation of uncertainties are fundamental for an efficient interpretation. But in fact, the heterogeneity of instruments or acquisition systems and the inherent problems to produce rapid models using real-time data lead to difficulties that may hinder crisis management. In an attempt to globally address these questions, the French volcanological and seismological observatories have developed a specific operational software system over the past 19 years. Based on GNU/Linux open source tools and a Web interface, the WebObs system mainly offers: (1) a modular database for equipment network management; (2) a dozen of evolving dedicated periodic tasks for each monitoring technique like seismology, deformations and geochemistry that use standard data formats with automated execution of periodic tasks that produce high-quality graphs on preset moving time intervals, data exports, optional event notifications including e-mail alerting, instruments status controls based on their data validity; (3) web-form interfaces for manual data input/editing and export; (4) a user request form to adjust the tasks parameters for a single execution and to produce customized graphs and data exports. This system hence constitute a web-based tool that perform integrated, centralized and automated real-time volcano monitoring. It has therefore become a strong support for data analysis and exchange between researchers, engineers, and technicians during periods of unrest as well as periods of long-term quiescence. WebObs is also widely open for development of interdisciplinary modeling and enhanced data processing. This allows scientists to test new methods with real-time data flux and to instantaneously share their results in the community.

Highlights

  • Any operational volcano observatory faces the complex mission of: (1) detecting changes in the behavior of the volcano through the acquisition of continuous as well as periodic long time-series of instrumental observations produced by multidisciplinary techniques in real-time as much as is possible; (2) quantifying and monitoring the spatio-temporal dynamics of those changes

  • In the French volcanological and seismological observatories which are responsible for La Soufrière de Guadeloupe, La Montagne Pelée, Piton de la Fournaise and recently the new Mayotte submarine volcano, we have developed since late 2000 an operational system named WebObs (WO) that attempts to address these common questions in the context of a generic pluri-instrumental volcanological and seismological observatory (Beauducel and Anténor-Habazac, 2002; Beauducel et al, 2004, 2010; Beauducel, 2006)

  • The overall objective of WO is to design an integrated operational tool, through a centralized web-based interface, that addresses most of the observatory daily needs from technical management to scientific analysis of real-time data even with quantitative modeling

Read more

Summary

Introduction

The WebObs System with respect to parameter and process critical thresholds; (3) assessing the short-term potential hazard for the population; and (4) informing the authorities and the population of the state of activity of the volcano and the potential hazards This implies a good understanding of natural phenomena, i.e., through the use of interpretative models, ideally with quantitative physical parameters like seismic energy, pressure source depth, fluid composition and thermodynamics or potential eruptive volumes. Today this quantitative approach is still strongly limited by our current knowledge of complex nonlinear volcanic processes and their uncertainties, volcanological fundamental research anchored in high-resolution observations and monitoring data provides a framework to continuously improve this knowledge. Few hours of delay in the updating of data processing can generate interpretations that might have serious consequences

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.