Abstract

The aim of webly supervised fine-grained image recognition (FGIR) is to distinguish sub-ordinate categories based on data retrieved from the Internet, which can significantly mitigate the dependence of deep learning on manually annotated labels. Most current fine-grained image recognition algorithms use a large-scale data-driven deep learning paradigm, which relies heavily on manually annotated labels. However, there is a large amount of weakly labeled free data on the Internet. To utilize fine-grained web data effectively, this paper proposes a Graph Representation and Metric Learning (GRML) framework to learn discriminative and effective holistic–local features by graph representation for web fine-grained images and to handle noisy labels simultaneously, thus effectively using webly supervised data for training. Specifically, we first design an attention-focused module to locate the most discriminative region with different spatial aspects and sizes. Next, a structured instance graph is constructed to correlate holistic and local features to model the holistic–local information interaction, while a graph prototype that contains both holistic and local information for each category is introduced to learn category-level graph representation to assist in processing the noisy labels. Finally, a graph matching module is further employed to explore the holistic–local information interaction through intra-graph node information propagation as well as to evaluate the similarity score between each instance graph and its corresponding category-level graph prototype through inter-graph node information propagation. Extensive experiments were conducted on three webly supervised FGIR benchmark datasets, Web-Bird, Web-Aircraft and Web-Car, with classification accuracy of 76.62%, 85.79% and 82.99%, respectively. In comparison with Peer-learning, the classification accuracies of the three datasets separately improved 2.47%, 4.72% and 1.59%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.