Abstract
The fuzzy-rough rule induction algorithms use fuzzy-rough set concepts such as t-norms, implicators and fuzzy tolerance relationship metrics to calculate the upper and lower approximations. In this direction, the paper examines the influence of the novel Webber t-norm on the model performance obtained with the QuickRules and VQRules algorithms over 19 datasets from different research disciplines. The AUC-ROC metric is used to assess model performance as well as the statistical significance compared to the control model with the highest rank. The obtained results revealed that the k-parameter of the Webber t-norm decreases the model descriptive performance as his value increases, but for the predictive performance of the model there was not any influence by this parameter. In both cases, we were able to identify specific algorithm settings, mostly specific metrics for fuzzy tolerance relations that produce models with high accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Analysis Techniques and Strategies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.