Abstract
In this work, we present a novel approach to clustering Web site users into different groups and generating common user profiles. These profiles can be used to make recommendations, personalize Web sites, and for other uses such as targeting users for advertising. By using the concept of mass distribution in Dempster-Shafer's theory, the belief function similarity measure in our algorithm adds to the clustering task the ability to capture the uncertainty among Web user's navigation behavior. Our algorithm is relatively simple to use and gives comparable results to other approaches reported in the literature of web mining.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.