Abstract

Normalized web distance (NWD) is a similarity or normalized semantic distance based on the World Wide Web or another large electronic database, for instance Wikipedia, and a search engine that returns reliable aggregate page counts. For sets of search terms the NWD gives a common similarity (common semantics) on a scale from 0 (identical) to 1 (completely different). The NWD approximates the similarity of members of a set according to all (upper semi)computable properties. We develop the theory and give applications of classifying using Amazon, Wikipedia, and the NCBI website from the National Institutes of Health. The last gives new correlations between health hazards. A restriction of the NWD to a set of two yields the earlier normalized Google distance (NGD), but no combination of the NGD’s of pairs in a set can extract the information the NWD extracts from the set. The NWD enables a new contextual (different databases) learning approach based on Kolmogorov complexity theory that incorporates knowledge from these databases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.