Abstract
Conventional search engines’ results are often plagued by problems like synonymy, polysemy, high volume etc. Clustering of search result other thanresolving these problems,lets user to quickly locate her information. In this paper, a method,called WSRDC-CSCC, is introduced to cluster web search result using cuckoo search meta-heuristic method and Consensus clustering. Cuckoo search provides a solid foundation for consensus clustering. As a local clustering function, k-means technique is used. The final number of cluster is not depended on this k. Consensus clustering finds the natural grouping of the objects. The proposed algorithm is compared to another clustering method which is based on cuckoo search and Bayesian Information Criterion. The experimental results show that proposed algorithm finds the actual number of clusters with great value of precision, recall and F-measure as compared to the other method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.