Abstract
In this study, Internet users were clustered by the search keywords which they type into search bars of search engines. Our proposed software is called UQCS (User Queries Clustering System) and it was developed to demonstrate the efficiency of our hypothesis. UQCS co-operates with the Strehl’s relationship based clustering toolkit and performs segmentation on users based on the keywords they use for searching the web. Internet Proxy server logs were parsed and query strings were extracted from the search engine URL’s and the resulting IP-Term matrix was converted into a similarity matrix using Euclidean, Jaccard, Cosine Distance and Pearson Correlation Distance metrics. K- Means and graph-based OPOSSUM algorithm were used to perform clustering on the similarity matrices. Results were illustrated by using CLUSION visualization toolkit.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.