Abstract

The number of web pages in Internet is increased by day by. New techniques are developed to reach or retrieve information from the documents in those web pages. Clustering is one of techniques used on web documents. In this study, the techniques such as Euclidean, Cosine, Pearson and Extended Jaccard used to find document similarities in web pages were tested by two data sets and performances were studied. In the experiments done for web documents clustering, found that Euclidean distance measure has high fault rates. The best performance in the similarity measures are provided by Cosine and Extended Jaccard measures. According to results of experiments that Cosine similarity measure was found suitable to use in the web documents clustering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.