Abstract

In this article, we introduce a web-based malware detection system that leverages a deep-learning approach. Our primary objective is the development of a robust deep-learning model designed for classifying malware in executable files. In contrast to conventional malware detection systems, our approach relies on static detection techniques to unveil the true nature of files as either malicious or benign. Our method makes use of a one-dimensional convolutional neural network 1D-CNN due to the nature of the portable executable file. Significantly, static analysis aligns perfectly with our objectives, allowing us to uncover static features within the portable executable header. This choice holds particular significance given the potential risks associated with dynamic detection, often necessitating the setup of controlled environments, such as virtual machines, to mitigate dangers. Moreover, we seamlessly integrate this effective deep-learning method into a web-based system, rendering it accessible and user-friendly via a web interface. Empirical evidence showcases the efficiency of our proposed methods, as demonstrated in extensive comparisons with state-of-the-art models across three diverse datasets. Our results undeniably affirm the superiority of our approach, delivering a practical, dependable, and rapid mechanism for identifying malware within executable files.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call