Abstract
Protein instability leads to reversible self-association and irreversible aggregation which is a major concern for developing new biopharmaceutical leads. Protein solution behaviour is dictated by the physicochemical properties of the protein and the solution. Optimising protein solutions through experimental screens and targeted protein engineering can be a difficult and time consuming process. Here, we describe development of the protein-sol web server, which was previously restricted to protein solubility prediction from amino acid sequence. Tools are presented for calculating and mapping patches of hydrophobicity and charge on the protein surface. In addition, predictions of folded state stability and net charge are displayed as a heatmap for a range of pH and ionic strength conditions. Tools are evaluated in the context of antibodies, their fragments and interactions. Surprisingly, antibody-antigen interfaces are, on average, at least as polar as Fab surfaces. This benchmarking process provides the user with thresholds with which to assess non-polar surface patches, and possible solubility implications, in proteins of interest. Stability heatmaps compare favourably with experimental data for CH2 and CH3 domains. Display and quantification of surface polarity and pH/ionic strength dependence will be useful generally for investigation of protein biophysics.
Highlights
Protein biopharmaceuticals, and in particular monoclonal antibodies, are crucial for many new generation therapeutic interventions[1,2]
The development and use of therapeutic proteins can be limited by instabilities which complicate manufacture, storage and delivery
To help improve the developability of biopharmaceuticals, in past work, we introduced the protein-sol sequence software for predicting protein solubility based on primary structure[45]
Summary
Protein biopharmaceuticals (biologics), and in particular monoclonal antibodies, are crucial for many new generation therapeutic interventions[1,2]. Most biopharmaceutical antibodies are delivered subcutaneously[6], and this limits the maximum volume to around
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.