Abstract
Background and purposePost-stroke cognitive impairment (PSCI) is highly prevalent in modern society. However, there is limited study implying an accurate and explainable machine learning model to predict PSCI. The aim of this study is to develop and validate a web-based artificial intelligence (AI) tool for predicting PSCI. MethodsThe retrospective cohort study design was conducted to develop and validate a web-based prediction model. Adults who experienced a stroke between January 1, 2004, and September 30, 2017, were enrolled, and patients with PSCI were followed up from the stroke index date until their last follow-up. The model's performance metrics, including accuracy, area under the curve (AUC), recall, precision, and F1 score, were compared. ResultsA total of 3209 stroke patients were included in the study. The model demonstrated an accuracy of 0.8793, AUC of 0.9200, recall of 0.6332, precision of 0.9664, and F1 score of 0.7651. In the external validation phase, the accuracy improved to 0.9039, AUC to 0.9094, recall to 0.7457, precision to 0.9168, and F1 score to 0.8224. The final model can be accessed at https://psci-calculator.my.id/. ConclusionOur results are able to produce a user-friendly interface that is useful for health practitioners to perform early prediction on PSCI. These findings also suggest that the provided AI model is reliable and can serve as a roadmap for future studies using AI models in a clinical setting
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.